metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Trichlorido(2-phenylpyridine-κN)gold(III)

Xiang-Pei Zhang,^a Guang Yang,^a Lan Wang^b and Seik Weng Ng^c*

^aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China, ^bDepartment of Mathematics, Zhengzhou University, Zhengzhou 450001, People's Republic of China, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 26 April 2007; accepted 29 April 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; R factor = 0.022; wR factor = 0.079; data-to-parameter ratio = 20.4.

The Au^{III} atom in the title compound, $[AuCl_3(C_{11}H_9N)]$, exists in a square planar AuCl₃N geometry. The phenyl ring of the ligand is twisted by 51.6 (3)° with respect to the pyridyl ring.

Related literature

For the synthesis of the compound, see: Constable & Leese (1989). The compound is a precursor to (2-phenylpyridyl- $\kappa N,\kappa C$)gold(III) dichloride (Fan *et al.*, 2003).

For related literature, see: Zhang et al. (2006).

Experimental

Crystal data [AuCl₃(C₁₁H₉N)] $M_r = 458.51$

Triclinic, $P\overline{1}$ a = 8.192 (2) Å

	b = 9.078 (2) Å c = 10.296 (2) Å $\alpha = 66.28 (3)^{\circ}$ $\beta = 83.74 (3)^{\circ}$ $\gamma = 68.02 (2)^{\circ}$ $V = 649.2 (2) \text{ Å}^{3}$	Z = 2 Mo K α radiation μ = 11.92 mm ⁻¹ T = 298 (2) K 0.29 × 0.24 × 0.18 mm
	Data collection Rigaku R-AXIS RAPID IP diffractometer Absorption correction: mumerical (NUMABS; Higashi, 1995) $T_{min} = 0.090, T_{max} = 0.223$	6439 measured reflections 2952 independent reflections 2823 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$
	Refinement	
1	$R[F^2 > 2\sigma(F^2)] = 0.022$ wR(F ²) = 0.079 S = 1.30	145 parameters H-atom parameters constrained $\Delta \rho_{max} = 1.06 \text{ e} \text{ Å}^{-3}$

Table 1

2952 reflections

Selected bond lengths (Å).

Au1-N1	2.035 (5)	Au1-Cl2	2.258 (2)
Au1-Cl1	2.268 (2)	Au1-Cl3	2.280 (2)

 $\Delta \rho_{\rm min} = -0.92$ e Å⁻³

Data collection: *RAPID-AUTO* (Rigaku Corporation, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2007).

We thank the Education Department of Henan Province, Zhengzhou University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2395).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Constable, E. C. & Leese, T. A. (1989). J. Organomet. Chem. 363, 419-424.
- Fan, D., Yang, C.-T., Ranford, J. D., Lee, P. F. & Vittal, J. J. (2003). J. Chem. Soc. Dalton Trans. pp. 2680–2685.
- Higashi, T. (1995). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Westrip, S. P. (2007). publCIF. In preparation.
- Zhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018-m2020.

supplementary materials

Acta Cryst. (2007). E63, m1582 [doi:10.1107/S1600536807021307]

Trichlorido(2-phenylpyridine-*KN*)gold(III)

X.-P. Zhang, G. Yang, L. Wang and S. W. Ng

Comment

A previous study reported the crystal structure of 4,4'-bipyridinium tetrachloroaurate(III) chloride, which was obtained unexpectedly from the reaction of 4,4'-bipyridine and potassium tetrachloraurate (Zhang *et al.*, 2006). The direct reaction of 2-phenylpyridine with gold chloride yielded the expected title compound (I), which has the metal center in a square plane that is composed of the donor nitrogen site along with three chlorine atoms (Table 1, Fig. 1).

Experimental

This compound was prepared as described in the literature (Constable & Leese, 1989). Bright-yellow crystals of (I) were obtained by its recrystalization from aqueous acetonitrile (xx:xx v/v).

Refinement

The H atoms were placed in calculated positions [C—H 0.93 Å; U(H) = $1.2U_{eq}(C)$]. The highest peak in the final difference map is 0.9 Å from Au1 and the deepest hole is 0.7 Å from Au1.

Figures

Fig. 1. **Figure 1**. View of the molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level (arbitary spheres for the H atoms).

Trichlorido(2-phenylpyridine-κN)gold(III)

Crystal data	
[AuCl ₃ (C ₁₁ H ₉ N)]	Z = 2
$M_r = 458.51$	$F_{000} = 424$
Triclinic, P1	$D_{\rm x} = 2.346 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.192 (2) Å	Cell parameters from 6137 reflections
b = 9.078 (2) Å	$\theta = 3.0-27.5^{\circ}$
c = 10.296 (2) Å	$\mu = 11.92 \text{ mm}^{-1}$

$\alpha = 66.28 (3)^{\circ}$
$\beta = 83.74 (3)^{\circ}$
$\gamma = 68.02 \ (2)^{\circ}$
V = 649.2 (2) Å ³

Data collection

Rigaku R-AXIS RAPID IP diffractometer	2952 independent reflections
Radiation source: fine-focus sealed tube	2823 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 298(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scan	$\theta_{\min} = 3.0^{\circ}$
Absorption correction: mumerical (NUMABS; Higashi, 1995)	$h = -10 \rightarrow 10$
$T_{\min} = 0.090, \ T_{\max} = 0.223$	$k = -11 \rightarrow 11$
6439 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.022$	H-atom parameters constrained
$wR(F^2) = 0.079$	$w = 1/[\sigma^2(F_o^2) + (0.0425P)^2 + 0.2981P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.30	$(\Delta/\sigma)_{\rm max} = 0.001$
2952 reflections	$\Delta \rho_{max} = 1.06 \text{ e } \text{\AA}^{-3}$
145 parameters	$\Delta \rho_{min} = -0.92 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

T = 298 (2) KBlock, yellow

 $0.29\times0.24\times0.18~mm$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Au1	0.60793 (2)	0.81841 (2)	0.703793 (18)	0.03193 (9)
Cl1	0.4693 (2)	0.8672 (3)	0.8937 (2)	0.0564 (4)
C12	0.7651 (2)	0.9810 (2)	0.6926 (2)	0.0524 (4)
C13	0.7367 (2)	0.7757 (2)	0.50767 (17)	0.0468 (3)
N1	0.4665 (6)	0.6723 (6)	0.7124 (5)	0.0387 (10)
C1	0.2963 (7)	0.7577 (8)	0.6642 (7)	0.0450 (12)
H1	0.2464	0.8759	0.6421	0.054*
C2	0.1949 (8)	0.6762 (10)	0.6468 (7)	0.0528 (15)
H2	0.0772	0.7368	0.6151	0.063*
C3	0.2731 (10)	0.4994 (11)	0.6779 (8)	0.0597 (18)
Н3	0.2095	0.4404	0.6642	0.072*
C4	0.4429 (9)	0.4153 (9)	0.7283 (7)	0.0519 (14)
H4	0.4949	0.2971	0.7512	0.062*

C5	0.5401 (8)	0.5015 (7)	0.7465 (6)	0.0406 (11)
C6	0.7262 (7)	0.4083 (7)	0.8082 (6)	0.0384 (11)
C7	0.7772 (8)	0.4233 (7)	0.9251 (6)	0.0435 (12)
H7	0.6982	0.4997	0.9619	0.052*
C8	0.9457 (9)	0.3244 (9)	0.9872 (8)	0.0527 (14)
H8	0.9791	0.3332	1.0664	0.063*
C9	1.0635 (9)	0.2131 (9)	0.9316 (8)	0.0563 (16)
Н9	1.1768	0.1469	0.9728	0.068*
C10	1.0126 (9)	0.2001 (8)	0.8141 (8)	0.0532 (15)
H10	1.0924	0.1251	0.7765	0.064*
C11	0.8458 (8)	0.2966 (7)	0.7525 (7)	0.0470 (13)
H11	0.8131	0.2870	0.6734	0.056*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.03303 (12)	0.02905 (12)	0.03363 (13)	-0.00925 (8)	-0.00320 (8)	-0.01286 (8)
Cl1	0.0579 (9)	0.0643 (10)	0.0499 (9)	-0.0134 (8)	0.0078 (7)	-0.0345 (8)
Cl2	0.0608 (9)	0.0451 (7)	0.0611 (10)	-0.0273 (7)	-0.0070 (7)	-0.0205 (7)
C13	0.0538 (8)	0.0525 (8)	0.0415 (8)	-0.0237 (7)	0.0098 (6)	-0.0235 (6)
N1	0.042 (2)	0.045 (2)	0.037 (2)	-0.023 (2)	0.0048 (19)	-0.018 (2)
C1	0.040 (3)	0.054 (3)	0.043 (3)	-0.018 (3)	0.000 (2)	-0.020 (3)
C2	0.040 (3)	0.076 (4)	0.049 (4)	-0.029 (3)	0.000 (3)	-0.024 (3)
C3	0.072 (4)	0.077 (5)	0.060 (4)	-0.053 (4)	0.010 (3)	-0.034 (4)
C4	0.063 (4)	0.047 (3)	0.054 (4)	-0.030 (3)	-0.002 (3)	-0.018 (3)
C5	0.051 (3)	0.044 (3)	0.032 (3)	-0.023 (2)	0.001 (2)	-0.014 (2)
C6	0.048 (3)	0.034 (2)	0.040 (3)	-0.023 (2)	0.004 (2)	-0.014 (2)
C7	0.050 (3)	0.042 (3)	0.033 (3)	-0.012 (2)	-0.002 (2)	-0.013 (2)
C8	0.051 (3)	0.056 (4)	0.049 (4)	-0.015 (3)	-0.005 (3)	-0.020 (3)
C9	0.050 (3)	0.053 (4)	0.056 (4)	-0.014 (3)	-0.001 (3)	-0.015 (3)
C10	0.056 (3)	0.040 (3)	0.055 (4)	-0.008 (3)	0.003 (3)	-0.019 (3)
C11	0.055 (3)	0.041 (3)	0.050 (3)	-0.015 (3)	0.002 (3)	-0.024 (3)

Geometric parameters (Å, °)

Au1—N1	2.035 (5)	C4—H4	0.9300
Au1—Cl1	2.268 (2)	C5—C6	1.503 (8)
Au1—Cl2	2.258 (2)	C6—C7	1.388 (8)
Au1—Cl3	2.280 (2)	C6—C11	1.385 (8)
N1—C1	1.351 (8)	С7—С8	1.387 (9)
N1—C5	1.341 (7)	С7—Н7	0.9300
C1—C2	1.367 (8)	C8—C9	1.377 (10)
C1—H1	0.9300	C8—H8	0.9300
C2—C3	1.397 (11)	C9—C10	1.382 (10)
С2—Н2	0.9300	С9—Н9	0.9300
C3—C4	1.353 (10)	C10-C11	1.372 (9)
С3—Н3	0.9300	C10—H10	0.9300
C4—C5	1.378 (8)	C11—H11	0.9300

supplementary materials

N1—Au1—Cl1	90.2 (1)	N1C5C4	119.8 (6)
N1—Au1—Cl2	179.6 (1)	N1C5C6	118.5 (5)
N1—Au1—Cl3	88.9 (1)	C4—C5—C6	121.7 (5)
Cl1—Au1—Cl2	90.21 (7)	C7—C6—C11	119.5 (6)
Cl1—Au1—Cl3	177.68 (5)	C7—C6—C5	121.4 (5)
Cl2—Au1—Cl3	90.70 (6)	C11—C6—C5	118.9 (5)
C1—N1—C5	119.8 (5)	C6—C7—C8	120.1 (6)
C1—N1—Au1	116.8 (4)	С6—С7—Н7	120.0
C5—N1—Au1	122.9 (4)	С8—С7—Н7	120.0
N1—C1—C2	122.2 (6)	C9—C8—C7	120.0 (7)
N1—C1—H1	118.9	С9—С8—Н8	120.0
С2—С1—Н1	118.9	С7—С8—Н8	120.0
C1—C2—C3	118.1 (6)	C10—C9—C8	119.7 (6)
C1—C2—H2	121.0	С10—С9—Н9	120.2
С3—С2—Н2	121.0	С8—С9—Н9	120.2
C4—C3—C2	119.0 (6)	C9—C10—C11	120.8 (6)
С4—С3—Н3	120.5	С9—С10—Н10	119.6
С2—С3—Н3	120.5	C11—C10—H10	119.6
C3—C4—C5	121.2 (6)	C10-C11-C6	119.9 (6)
C3—C4—H4	119.4	C10-C11-H11	120.0
C5—C4—H4	119.4	C6—C11—H11	120.0
Cl1—Au1—N1—C1	75.5 (4)	C3—C4—C5—C6	177.4 (6)
Cl3—Au1—N1—C1	-102.4 (4)	N1—C5—C6—C7	52.6 (7)
Cl1—Au1—N1—C5	-112.9 (4)	C4—C5—C6—C7	-125.4 (6)
Cl3—Au1—N1—C5	69.3 (4)	N1-C5-C6-C11	-131.6 (6)
C5—N1—C1—C2	-0.9 (9)	C4—C5—C6—C11	50.3 (8)
Au1—N1—C1—C2	171.1 (5)	C11—C6—C7—C8	-1.2 (8)
N1-C1-C2-C3	-1.2 (10)	C5—C6—C7—C8	174.5 (5)
C1—C2—C3—C4	2.3 (10)	C6—C7—C8—C9	1.0 (10)
C2—C3—C4—C5	-1.4 (11)	C7—C8—C9—C10	-0.2 (10)
C1—N1—C5—C4	1.8 (8)	C8—C9—C10—C11	-0.2 (10)
Au1—N1—C5—C4	-169.6 (5)	C9—C10—C11—C6	-0.1 (10)
C1—N1—C5—C6	-176.3 (5)	C7—C6—C11—C10	0.8 (9)
Au1—N1—C5—C6	12.3 (7)	C5—C6—C11—C10	-175.0 (5)
C3—C4—C5—N1	-0.7 (10)		

Fig. 1